Cycloaddition of norbornadiene to fluorine-containing heteroaddends

N. V. Vasil'ev, T. D. Truskanova, A. V. Buzaev, D. V. Romanov, at and G. V. Zatonskiib

^aMilitary University of Radiation, Chemical, and Biological Defence,
 13 per. Brigadirskii, 107005 Moscow, Russian Federation.
 E-mail: 79262047229@megawap.ru
 ^bN. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences,
 47 Leninsky prosp., 119991 Moscow, Russian Federation.
 E-mail: zatonsk@cacr.ioc.ac.ru

Cycloaddition reactions of norbornadiene with fluorinated heteroaddends (hexafluoroacetone, dichlorotetrafluoroacetone, trifluoroacetonitrile, and N-trifluoroacetylhexafluoropropan-2-imine) were studied. As a rule, the reactions follow the concerted mechanism. The reaction with bis(trifluoromethyl)ketene gave a mixture of tricyclene [2+2]- and [2+2+2]-cycloadducts formed along different pathways.

Key words: concerted cycloaddition, norbornadiene, tetracyclononane, heteroaddend.

Thermally allowed, concerted [2+2+2]-cycloaddition reactions of electron-withdrawing dienophiles with norbornadiene (NBD) 1 are known to give tetracyclononanes. 1—3 At the same time, fluorinated alkenes can enter into thermally forbidden [2+2]-cycloaddition reactions 4 through biradical transition states of the triplet type. 5

We found that the reactions of NBD 1 with fluorinated heteroaddends usually yield [2+2+2]-cycloadducts. For instance, NBD 1 reacted with hexafluoroacetone and *sym*-dichlorotetrafluoroacetone at 80 and 150 °C to give oxatetracyclononanes 2 and 3, respectively (Scheme 1).

The ¹⁹F NMR spectrum of compound **3** revealed the nonequivalence of all the F atoms (four signals form two AB systems). This result can be explained by the diastereotopic effect of the enantiotopic nucleus of fluorine.

Scheme 1

$$0 = CF_2Hal CF_2Hal$$

$$CF_2Hal$$

$$CF_2Hal$$

$$CF_2Hal$$

$$CF_2Hal$$

$$CF_2Hal$$

Hal = F (2), Cl (3)

Nitriles are weak dienophiles; only the most electrophilic nitriles enter into concerted cycloaddition.³ Indeed, NBD 1 reacted with trifluoroacetonitrile only at high temperatures (180—190 °C) and a long reaction time (40 h) was required to obtain azatetracyclononene 4 in 34% yield (Scheme 2).

Scheme 2

Apparently, the reaction of NBD 1 with *N*-trifluoro-acetylhexafluoropropan-2-imine proceeds exclusively as [2+4]-cycloaddition. In this case, acylimine served as a diene, while NBD 1 acts as a dienophile. This agrees well with known⁶ data on the high reactivities of perfluoro-acylimines as electrophilic 1,3-dienes. The [2+4]-cycloaddition gave tricyclic oxazine 5 (Scheme 3) as a mixture of the *endo*- and *exo*-cycloadducts in the 1:4 ratio. The *endo*-isomer was assigned by considering the vicinal spinspin coupling constants of the protons in the dissimilar

Scheme 3

1
$$F_3CCN = C(CF_3)_2$$
 $F_3CCN = C(CF_3)_2$
 $F_3CN = C(CF_3)_2$
 F_3CN

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 1013—1015, April, 2005.

bridgeheads: $J_{\rm H(1),H(2)}=4.0$ Hz, $J_{\rm H(7),H(8)}=3.0$ Hz, and $J_{\rm H(2),H(7)}=8.4$ Hz. The presence of the *exo*-configuration is confirmed by the nondetectable constants $J_{\rm H(1),H(2)}$ and $J_{\rm H(7),H(8)}$ (< 1 Hz) and the constant $J_{\rm H(2),H(7)}=7.0$ Hz.⁷

Among the heteroaddends studied, only bis(trifluoromethyl)ketene behaved ambiguously in the cycloaddition reaction with NBD 1: under mild conditions, this reaction yielded a mixture of cycloadducts 6 and 7 (Scheme 4), which are well separated off by fractionation. Unsaturated tricyclic adduct 7 was obtained stereospecifically as the *exo*-isomer, as evident from the absence of significant vicinal spin-spin coupling constants of the protons in the dissimilar bridgeheads (H(1)—H(2), H(5)—H(6)) and the presence of the vicinal spin-spin coupling constant of the protons in the *endo*-positions ($J_{H(2),H(5)} = 6.0 \text{ Hz}$).⁷

Scheme 4

1
$$\xrightarrow{O=C=C(CF_3)_2}$$
 + $\xrightarrow{O=C=C(CF_3)_2}$ 7

Apparently, the formation of adduct 7 follows the zwitterionic mechanism. Intermediate species 8 is highly stabilized by the electronic effects of the substituents.

Thus, we found that the reactions of NBD 1 with fluorinated hetero-addends predominantly occur as thermally allowed [2+2+2]- and [2+4]-cycloaddition.

Partial [2+2]-cycloaddition, along with [2+2+2]-cycloaddition, in the reaction of NBD 1 with bis(trifluoromethyl)ketene is probably due to the high stabilization of the dipolar intermediate.

Experimental

¹H NMR spectra were recorded on a Bruker AC-300 spectrometer (300.13 MHz). ¹⁹F NMR spectra were recorded using a Bruker DRX-500 spectrometer (470 MHz). Chemical shifts (δ) are referenced to Me₄Si (¹H) and CF₃COOH (¹⁹F) as the external standards. IR spectra were recorded on a UR-20 spectrometer (thin film). The purity of the compounds obtained was checked by GLC on an HP 5890 II Series chromatograph fitted with an HP 5972A MSD mass-selective detector (column length 30 m, SE-30 as the mobile phase). The physicochemical characteristics, the elemental analysis data, the yields of the products, and the reaction conditions are given in Table 1. ¹H and ¹⁹F NMR and IR spectra are presented in Table 2. Commercial reagents and solvents were prepared according to known procedures.⁷

Reactions of norbornadiene 1 with unsaturated polyfluorinated heteroaddends (general procedure). A mixture of an unsaturated addend (25 mmol) and NBD 1 (27.5 mmol) in dry ether (5 mL) was heated in a closed tube at a specified temperature (see Table 1). Volatile components were removed at a residual pressure of ~20 Torr and 20 °C and the residue was fractionated *in vacuo*. Compounds 6 and 7 were fractionated twice.

Table 1. Physicochemical characteristics of products 2—7

Product	Reaction conditions		Yield	B.p.	n_{D}^{20}	Found (%)			Molecular
	T/°C	τ/h	(%)	/°C		Cal	culated		formula
	-, -	-,		(p/Torr)		С	Н	N	
5,5-Bis(trifluoromethyl)-4-oxatetracyclo[4.2.1.0 ^{3,7}]nonane (2)	80	20	48	80 (24)	1.400	46.86 46.52	3.42 3.12	_	$C_{10}H_8F_6O$
5,5-Bis(chlorodifluoromethyl)- 4-oxatetracyclo[4.2.1.0 ^{3,7}]- nonane (3)	150	10	36	95 (5)	1.4595	41.65 41.26	2.90 2.77	_	$C_{10}H_8Cl_2F_4O$
5-Trifluoromethyl-4-azatetra-cyclo[4.2.1.0 ^{3,7}]non-4-ene (4)	180—190	40	34	30 (2)	1.4342	<u>57.95</u> 57.76	4.45 4.31	7.81 7.48	$C_9H_8F_3N$
4,4,6-Tris(trifluoromethyl)-3-oxa- 5-azatricyclo[6.2.1.0 ^{2,7}]undeca- 4,9-diene (5)	20	100	70	120 (20)	1.3960	<u>40.58</u> 40.81	2.42 2.28	4.12 3.97	$C_{12}H_8F_9NO$
5-[2,2,2-Trifluoro-1-(trifluoro-methyl)ethylidene]-4-oxatetra-cyclo[4.3.0.0 ^{2,9} .0 ^{3,7}]nonane (6)	20	40	42	120 (10)	1.4300	48.66 48.90	2.57 2.98	_	$C_{11}H_8F_6O$
4,4-Bis(trifluoromethyl)tri- cyclo[4.2.1.0 ^{2,5}]non-7-en-3-one (7	20	40	31	81 (10)	1.4145	48.56 48.54	3.55 3.70	_	$C_{11}H_{10}F_6O$

Table 2. Spectroscopic data for compounds 2—7

Com-	NMR (CDCl ₃ , δ , J/Hz)	IR,	
pound	1 _H	¹⁹ F	v/cm ⁻¹
2	1.45 (m, 2 H, CH); 1.55 (m, 1 H, CH); 1.70 (br.s, 2 H, CH); 2.53, 2.80, 4.60 (all s, 1 H each, CH)	-7.41 , -1.13 (both q, 3 F each, CF ₃ , $J_{\text{CF}_3,\text{CF}_3} = 10.3$)	2995 (C—H)
3	1.45 (m, 1 H, CH); 1.58 (m, 2 H, CH); 1.70 (s, 2 H, CH); 2.55, 2.92, 4.62 (all s, 1 H each, CH)	$-24.2_{B'}$ (d, 1 F, CF ₂ Cl, $J_{A'B'} = 173.0$); $-22.5_{A'}$ (br.d, 1 F, CF ₂ Cl, $J_{A'B'} = 173.0$); -19.2_{B} , -17.0_{A} (both dm, 1 F each, CF ₂ Cl, $J_{AB} = 177.2$)	2991 (C—H)
4	1.60, 1.80 (both m, 2 H each, CH ₂); 1.90 (m, 1 H, CH); 2.40, 3.10 (both br.s, 1 H each, CH); 4.50 (s, 1 H, CH)	-6.4 (s, 3 F, CF ₃)	2992 (C—H); 1713 (C=N)
exo-5	1.48 _B , 1.76 _A (both d, 1 H each, CH, J_{AB} = 10.0); 2.40 (d, 1 H, CH, $J_{H(7),H(2)}$ = 7.0); 3.25 (br.s, 2 H, CH); 4.55 (d, 1 H, CH, $J_{H(2),H(7)}$ = 7.0); 6.20, 6.50 (both br.s, 1 H each, =CH)	-3.49 (br.q, 3 F, CF ₃ , $J_{\text{CF}_3,\text{CF}_3} = 10.8$); -1.68 (q, 3 F, CF ₃ , $J_{\text{CF}_3,\text{CF}_3} = 10.8$); -1.21 (s, 3 F, CF ₃)	2992 (C—H); 1713 (C=N)
endo-5	1.52 _B , 1.60 _A (both dd, 1 H each, CH, J_{AB} = 10.0); 2.85 (dd, 1 H, CH, $J_{H(7),H(2)}$ = 8.4, $J_{H(7),H(8)}$ = 3.0); 3.20, 3.40 (both m, 1 H each, CH); 5.17 (dd, 1 H, CH, $J_{H(2),H(7)}$ = 8.4, $J_{H(2),H(1)}$ = 4.0); 6.10, 6.20 (both br.s, 1 H each, =CH)	-3.02, -2.54 (both q, 3 F each,	2992 (C—H); 1713 (C=N)
6	1.65, 1.68, 1.72 (all m, 1 H each, CH); 1.80 _B , 1.95 _A (both d, 1 H each, CH, $J_{AB} = 12.0$); 2.40, 3.45, 4.90 (all s, 1 H each, CH)	-20.82 , -18.71 (both q, 3 F each, CF_3 , $J_{CF_3,CF_3} = 8.5$)	2950 (C—H); 1662 (C=C)
7	1.55 _B , 1.80 _A (both d, 1 H each, CH, $J_{AB} = 9.7$); 2.65 (d, 1 H, CH, $J_{H(5),H(2)} = 6.0$); 3.38, 3.45 (both s, 1 H each, CH); 3.55 (dm, 1 H, CH, $J_{H(2),H(5)} = 6.0$); 6.24, 6.38 (both m, 1 H each, =CH)	-14.0, -8.93 (both q, 3 F each,	2998 (C-H); 1803 (C=O); 1663 (C=C)

References

- C. G. Krespan, B. C. McKusick, and T. L. Cairus, J. Am. Chem. Soc., 1961, 83, 3428.
- W. J. Middleton and E. M. Binham, *J. Fluorine Chem.*, 1982, 20, 397.
- 3. N. V. Vasil'ev, A. E. Patalakha, and A. V. Buzaev, *Itogi Nauki Tekh., Ser.: Org. Khim.*, VINITI, Moscow, 1992, **23**, 1.
- 4. US Pat. No. 2 928 865, 15.03.1960; Chem. Abstr., 1960, 54, 18393.
- A. E. Patalakha, N. V. Vasil'ev, and A. V. Buzaev, *Khim. Fiz.*, 1994, 13, 65.
- A. V. Fokin, A. F. Kolomiets, and N. V. Vasil'ev, *Usp. Khim.*, 1984, 53, 398 [*Russ. Chem. Rev.*, 1984, 53 (Engl. Transl.)].
- 7. A. J. Gordon and R. A. Ford, *The Chemist's Companion.* A Handbook of Practical Data, Techniques, and References, Wiley, New York—London—Sydney—Toronto, 1972.

Received March 4, 2004; in revised form January 14, 2005